Hmmmm,,, bulan puasa gini enaknya nulis sesuatu yang nggak bikin ngantuk …
Nah, ini nih yang bakalan bikin teman-teman semua melek…
Kita akan mengulas dengan sejelas-jelasnya tentang teori permainan, bukan teori permainan monopoli atau teori permainan ular tangga lho, tapi teori permainan yang sering dilakukan dalam dunia bisnis dan ekonomi, kita mulai yuk !!!
Teori permainan merupakan suatu model matematika yang digunakan dalam situasi konflik atau persaingan antara berbagai kepentingan yang saling berhadapan sebagai pesaing. Teori ini dikembangkan untuk menganalisa proses pengambilan keputusan dari situasi persaingan yang berbeda dan melibatkan dua atau lebih kepentingan. Dalam permaian peserta adalah pesaing. Keuntungan bagi yang satu merupakan kerugian bagi yang lain. Model-model permainan dapat dibedakan berdasarkan jumlah pemain, jumlah keuntungan atau kerugian, dan jumlah startegi yang digunakan dalam permainan. Bila jumlah pemain ada dua, permainan disebut sebagai permainan dua pemain. Bila keuntungan atau kerugian sama dengan nol, disebut permainan jumlah nol (zero sum game).
Ada beberapa unsur atau konsep dasar yang sangat penting dalam penyelesaian setiap kasus dengan teori permainan yaitu:
1. Jumlah Pemain
Dalam hal ini pengertian “ jumlah pemain” tidak selalu sama artinya dengan “jumlah Orang” yang terlibat dalam permainan. jumlah pemain disini berarti jumlah kelompok pemain berdasarkan masing-masing kepentingan atau tujuannya.
2. Ganjaran /Payoff
Ganjaran/payoff adalah hasil akhir yang terjadi pada akhir permainan berkenaan dengan ganjaran ini, permainan digolongkan menjadi 2 macam kategori, yaitu permainan jumlah-nol (zero-sum games) dan permainan jumlah-bukan-nol (non-zero-sum games). permainan jumlah-nol terjadi jika jumlah ganjaran dari seluruh pemain adalah nol, yaitu dengan memperhitungkan setiap keuntungan sebagai bilangan positif dan setiap kerugian sebagai bilangan negatif. selain dari itu adalah permainan jumlah –bukan-nol.
Dalam permainan jumlah-nol setiap kemenangan bagi suatu pihak pemain merupakan kekalahan bagi pihak pemain lain. letak arti penting dari perbedaan kedua kategori permainan berdasarkan ganjaran ini adalah bahwa permainan jumlah-nol adalah suatu sistem yang tertutup.
3. strategi permainan
Strategi permainan dalam teori permainan adalah suatu siasat atau rencana tertentu dari seorang pemain, sebagai reaksi atas aksi yang mungkin dilakukan oleh pemain yang menjadi saingannya. permainan diklasifikasikan menurut jumlah strategi yang tersedia bagi masing-masing pemain. jika pemain pertama memiliki m kemungkinan strategi dan pemain kedua memiliki n kemungkinan strategi, maka permainan tersebut dinamakan permainan m x n. Perbedaan jenis permainan berdasarkan jumlah strategi ini adalah bahwa permainan dibedakan menjadi permainan berhingga dan permainan tak berhingga.
4. matriks permainan
matriks permainan disebut juga matriks ganjaran yaitu sebuah matriks yang semua unsur berupa ganjaran dari para pemain yang terlibat dalam permainan tersebut. baris-barisnya melambangkan strategi –strategi yang dimiliki pemain pertama, sedangkan kolom-kolomnya melambangkan strategi-strategi yang dimiliki pemain lain. dengan demikian, permainan berstrategi m x n dilambangkan dengan matriks permainan m x n .
Nilai dari suatu permainan adalah ganjaran rata-rata/ganjaran yang diharapkan dari sepanjang rangkaian permainan, dengan menganggap kedua pemain selalu berusaha memainkan strateginya yang optimum.
5. Titik pelana (Saddle Poin )
Titik pelana adalah suatu unsur didalam matriks permainan yang sekaligus sebagai maksimin baris dan minimaks kolom. permainan dikatakan bersaing ketat (Strictly determined) jika matriksnya memiliki titik pelana. strategi yang optimum bagi masing-masing pemain adalah strategi pada baris dan kolom yang mengandung titik pelana tersebut. dalam hal ini baris yang mengandung titik pelana merupakan strategi optimum bagi pemain pertama, sedangkan kolom yang mengandung titik pelana merupakan strategi optimum bagi pemain lain.
Selanjutnya akan dibahas tentang jenis permainan yaitu jenis permainan startegi murni (pure strategy game) dimana setiap pemain hanya menjalankan strategi tunggal dalam strategi optimalnya,dan permainan strategi campuran (mixed strategy game) dimana kedua pemain menjalankan strategi yang berbeda-beda.
Karena pembahasan tentang teori ini masih sangat panjang, teman-teman bisa langsung men-download file lengkapnya disini.
Nah, ini nih yang bakalan bikin teman-teman semua melek…
Kita akan mengulas dengan sejelas-jelasnya tentang teori permainan, bukan teori permainan monopoli atau teori permainan ular tangga lho, tapi teori permainan yang sering dilakukan dalam dunia bisnis dan ekonomi, kita mulai yuk !!!
Teori permainan merupakan suatu model matematika yang digunakan dalam situasi konflik atau persaingan antara berbagai kepentingan yang saling berhadapan sebagai pesaing. Teori ini dikembangkan untuk menganalisa proses pengambilan keputusan dari situasi persaingan yang berbeda dan melibatkan dua atau lebih kepentingan. Dalam permaian peserta adalah pesaing. Keuntungan bagi yang satu merupakan kerugian bagi yang lain. Model-model permainan dapat dibedakan berdasarkan jumlah pemain, jumlah keuntungan atau kerugian, dan jumlah startegi yang digunakan dalam permainan. Bila jumlah pemain ada dua, permainan disebut sebagai permainan dua pemain. Bila keuntungan atau kerugian sama dengan nol, disebut permainan jumlah nol (zero sum game).
Ada beberapa unsur atau konsep dasar yang sangat penting dalam penyelesaian setiap kasus dengan teori permainan yaitu:
1. Jumlah Pemain
Dalam hal ini pengertian “ jumlah pemain” tidak selalu sama artinya dengan “jumlah Orang” yang terlibat dalam permainan. jumlah pemain disini berarti jumlah kelompok pemain berdasarkan masing-masing kepentingan atau tujuannya.
2. Ganjaran /Payoff
Ganjaran/payoff adalah hasil akhir yang terjadi pada akhir permainan berkenaan dengan ganjaran ini, permainan digolongkan menjadi 2 macam kategori, yaitu permainan jumlah-nol (zero-sum games) dan permainan jumlah-bukan-nol (non-zero-sum games). permainan jumlah-nol terjadi jika jumlah ganjaran dari seluruh pemain adalah nol, yaitu dengan memperhitungkan setiap keuntungan sebagai bilangan positif dan setiap kerugian sebagai bilangan negatif. selain dari itu adalah permainan jumlah –bukan-nol.
Dalam permainan jumlah-nol setiap kemenangan bagi suatu pihak pemain merupakan kekalahan bagi pihak pemain lain. letak arti penting dari perbedaan kedua kategori permainan berdasarkan ganjaran ini adalah bahwa permainan jumlah-nol adalah suatu sistem yang tertutup.
3. strategi permainan
Strategi permainan dalam teori permainan adalah suatu siasat atau rencana tertentu dari seorang pemain, sebagai reaksi atas aksi yang mungkin dilakukan oleh pemain yang menjadi saingannya. permainan diklasifikasikan menurut jumlah strategi yang tersedia bagi masing-masing pemain. jika pemain pertama memiliki m kemungkinan strategi dan pemain kedua memiliki n kemungkinan strategi, maka permainan tersebut dinamakan permainan m x n. Perbedaan jenis permainan berdasarkan jumlah strategi ini adalah bahwa permainan dibedakan menjadi permainan berhingga dan permainan tak berhingga.
4. matriks permainan
matriks permainan disebut juga matriks ganjaran yaitu sebuah matriks yang semua unsur berupa ganjaran dari para pemain yang terlibat dalam permainan tersebut. baris-barisnya melambangkan strategi –strategi yang dimiliki pemain pertama, sedangkan kolom-kolomnya melambangkan strategi-strategi yang dimiliki pemain lain. dengan demikian, permainan berstrategi m x n dilambangkan dengan matriks permainan m x n .
Nilai dari suatu permainan adalah ganjaran rata-rata/ganjaran yang diharapkan dari sepanjang rangkaian permainan, dengan menganggap kedua pemain selalu berusaha memainkan strateginya yang optimum.
5. Titik pelana (Saddle Poin )
Titik pelana adalah suatu unsur didalam matriks permainan yang sekaligus sebagai maksimin baris dan minimaks kolom. permainan dikatakan bersaing ketat (Strictly determined) jika matriksnya memiliki titik pelana. strategi yang optimum bagi masing-masing pemain adalah strategi pada baris dan kolom yang mengandung titik pelana tersebut. dalam hal ini baris yang mengandung titik pelana merupakan strategi optimum bagi pemain pertama, sedangkan kolom yang mengandung titik pelana merupakan strategi optimum bagi pemain lain.
Selanjutnya akan dibahas tentang jenis permainan yaitu jenis permainan startegi murni (pure strategy game) dimana setiap pemain hanya menjalankan strategi tunggal dalam strategi optimalnya,dan permainan strategi campuran (mixed strategy game) dimana kedua pemain menjalankan strategi yang berbeda-beda.
Karena pembahasan tentang teori ini masih sangat panjang, teman-teman bisa langsung men-download file lengkapnya disini.
Tidak ada komentar:
Posting Komentar